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ABSTRACT ARMs are real orthogonal functions (or vectors, if the vibrg

body possesses a finite number of degrees of freedom) describ
ing velocity patterns over the surface of a vibrating body.fér

as compact loudspeaker arrays are concerned, one of the main
‘advantages of the ARMs over the SHs is that they span a fi-
nite dimension subspace (the subspace dimension is theanumb
of drivers in the array) on which any radiation pattern thedlo

. i . . speaker array is able to produce can be projected with n@appr
us.ed.: large synthesis error at h'gh, frequenues due togd;patl irﬁation error?/whereas gHs span an infipnité dimension sm,‘:;%a
aliasing and huge membrane velocities at low frequencies du g, yhat truncation error generally arises. On the other hamd

o low .radlatlon efﬁuengy. This vyork presents a cCOmpamatlv o the ARMSs, the SHs lead to a directivity format that does n
theoretical study of the five Platonic loudspeakers. THailitp depend on the reproduction device and therefore the souted ma

to(;_ep_roducedSHs and th? rad?tl?n_efﬁﬁlenmeﬁ of Lhe'(; 9(.;’0“ 1o 18l S0 encoded is compatible to different loudspeakenyarfel.
radiation modes are evaluated. It is shown that the dodecahe In fact, the real SHs are the ARMs of the continuous

dron presents the best compromise between complexity of thesphere [9], which is defined here as the sphere able to assume

controllable patterns, number of channels and sound power. any surface velocity pattern (infinite number of degreeses-f
dom). Moreover, at low frequencies, the ARMs of spherical ar
1. INTRODUCTION rays give rise to far-field radiation patterns that match réed
SHs, although the radiation efficiencies of an ARM and its cor
Compact spherical arrays of independent loudspeakeratipgr responding SH are different [7]. In other words, at low frexqu
at the same frequency range have been used as directivity concies, the synthesis error in mimicking a given target divétgtin
trolled sound sources. The transducers are usually digédb  the far-field remains unchanged whether the ARMs or the SHs
over the spherical frame according to a Platonic solid gggme  are used. However, only the ARMSs provide the correct raohati
to obtain a highly symmetrical configuration, so that theurec  efficiencies associated to each channel of the loudspeaiest a
rence of preferred regions in the 3-D rendition space iscedu This work presents a comparative theoretical study of the
Hexahedral [1], dodecahedral [2, 3] and icosahedral [4] five Platonic solid loudspeakers (with one driver per facejlia
sources with one driver per face have been reported in & lit  rectivity controlled sound sources. Their radiation patseare
ature (an icosahedron with six drivers per face was proposed derived analytically by approximating each driver as a eanv
[5]). Such devices are commonly used to synthesize pura-sphe spherical cap that oscillates with a constant radial vefomin-

Compact spherical loudspeaker arrays in the shape of Rtaton
solids have been used as directivity controlled sound ssurc
Such devices are commonly used to synthesize spherical har
monic (SH) radiation patterns, which might be later comdine
to produce different directivities. The SH synthesis pnese
two main difficulties whose extent depends on the Platorlid so

ical harmonics (SHs) in the far-field under free-field coiudis, plitude over its surface, as described in [6]. The abilitythf

which might be later combined to produce different diretigs. Platonic sources in reproducing pure SH patterns in the-leas
The synthesis of pure SHs by a compact loudspeaker arraysquares sense is reviewed. In addition, the radiation efftdés

presents two main difficulties, namely, spatial aliasinghie of the ARMs of each Platonic source are computed in order to

high-frequency range and low radiation efficiency in the-low evaluate the low-frequency constraint mentioned before.
frequency range. The former degrades the SHs synthesis]L, 2
and the latter implies huge membrane velocities in orderde p
duce meaningful sound power levels [7]. The extent of these

problems is greatly affected by the position of each drivethe hi . . . fth in th lated
array and by the number of transducers, i.e., the choiceeof th | NS SEction gives an overview of the main theory relatedéo t

Platonic solid is of major importance to the array perforoen radiation control by a compact spherical loudspeaker array

Instead of using SHs as preprogrammed basic directivities,
the acoustic radiation modes (ARMs) of the loudspeaketyarra 2.1. Acoustic radiation modes (ARMS)
can be used as a basis for directivity representation [7]e Th

2. THEORY

This subsection presents a short introduction to the ARMs. F
This work was sponsored by CAPES (Brazil) and CNRS (France). further details, refer to [7, 9].
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For a vibrating body withl degrees of freedom, the ARMs  wheremn = n? + n + 1 4+ m is used for linear indexing of the
form a set ofL real orthogonal vectors that span the subspace SHs, k is the wave numbey; is the sphere radius amj}v”(.)
of the achievable velocity patterns over the body surfadee T are the spherical Hankel functions of the first and second. kin
ARMs can be obtained by the eigenvalue decomposition of an Equation (2) shows that,,, does not depend om and is

operator related to the radiation efficiency of the vibrgiiody. only a function of the non-dimensional parameterfor SHs of
The radiation efficiencyy, of a vibrating structure witiL a given orden. The radiation efficiencies for the first 49 ARMs
degrees of freedom can be written as (SHs up to order. = 6) are presented in Fig. 1.
ufcu

a(u) = TV ()

whereu is a column vector of velocity amplitude coefficients,
Cis anL x L real symmetric matrix which couples the power
radiated by the elements of V is anL x L real positive diag-
onal matrix which leads to the spatial mean-square velawity
the structure surface and the superscript H indicates timplex
conjugate transpose. Throughout this work, unless otlserwi e v .
specified, lower case bold letters indicate vectors, whilpen 1075 BRI PO mn=10-16 (n=3)
case bold letters indicate matrices. mn=17-25 (n=4)
Notice that the radiation efficiency is in the form of the gen- mn=26-36 E”ZS)

=37-49 (n=6
eralized Rayleigh quotient. Thus, the solution of the galierd 107 - = o = X
eigenvalue problery = A\V1) leads to a set of. real orthog- 10 10 Ka 10 10
onal eigenvectorg,, ¥, ...,y corresponding to real eigen-

values, ordered as; > A2 > ... > Ar. These eigenvectors
are the ARMs and the eigenvalues are their radiation effigien
coefficients, i.e.g; = o(v,) = ;.

It can be shown that these modes (ARMs) radiate sound en- giq e 1 jllustrates the grouping characteristic of theuseo
ergy independently, i.e., the total radiated sound powgivisn tic radiation modes discussed in [9]. The number of modes
by a linear combination of the sound power produced by each  iin each groupign+1,ie., 16 =0),30n =1),5(0 = 2),
mode. Because such a modal decomposition is closely related, (n = 3), 9 (n = 4), etc. It is shown thatr,.., increases with
to the radiation efficiency of the vibrating body, it permiék- 4 'anq decreases witlh Moreover, at lowka values, the radia-
ing the expansion terms (ARMs) with respect to their radiati o efficiency is strongly affected by, so that simple directiv-
efficiencies, so that a reduced number of active channelbean ity patterns (lower order SHs) radiate much more efficietityn
obtained by not driving inefficient modes. In addition, theMs complex ones. This result pinpoints the main difficulty ceme
are only a function of frequency, the radiating structurerge- ing sound radiation reproduction in the low-frequency erte
try and the constraints the body is subjected to; they do eeot d sphere surface must present a huge velocity amplitude ir ord

pend on the source of excitation and on the mass apd stiftifiess ¢ produce complex directivity patterns with meaningfuliiso
the structure. Furthermore, the ARMs of some radiators,(a.g power levels.

continuous sphere) are proven to be frequency indepenBent. It is worth noting thato,.. can be increased over a given

these reasons, the ARM; are a useful r.epresentatior) otimibr.a frequency range by increasing However, for compact spheri-
patter_ns w_hen one is mainly interested in the sound fieldtedi cal loudspeaker arrays, it is known that a larger spheredithé
by a vibrating structure. radiation control in the high-frequency range due to spatias-

) ing artifacts. Therefore a compromise must be sought betwee
2.2. Continuous sphere low and high frequency reproduction.

Figure 1: Radiation efficiencies of the first 49 acoustic atidn
modes of the continuous sphere (spherical harmonics).

Before considering the spherical loudspeaker arrayshilisful )
to investigate some acoustical aspects of the sound fielatead ~ 2-3. Discrete sphere

by a “continuous sphere”, which was defined in section 1. Some attempts have been made to predict the interactioreof th
It was demonstrated in [9] that the real-valued SHs are the (agiated sound fields produced by the independent driveas of
ARMs of the continuous sphere. In this case, since the vitrat compact spherical loudspeaker array [2, 3, 6, 7, 10]. Fonthe

body ha; an infinite number of degrees of freedom, .the ARMs ment, the spherical caps approach proposed in [6] is the most
are functions rather than vectors. Moreover, there is agtexa _elaborate radiation prediction model for a spherical ariay

correspondence between each ARM and the radiation pattern i yhich the drivers of the array are modeled as convex spherica
produces, which means that when the surface velocity biistri  c5n5 each one oscillating with a constant radial veloaity a
tion over the sphere matches a given SH function, the angularjitude over its surface. This model presents the advantéige

distribution of the radiated sound pressure field is alsergivy having an analytical solution and is inspired in a previoaskw
the same SH, regardless of frequency. Such a correspondencgeaing with a single driver mounted on a rigid sphere [11].
does not hold for the spherical loudspeaker arrays. In this work, the radiation patterns of compact spherical
Letn e Nandm € Z: |m| < n index the SHs. Then, the  |5,dspeaker arrays are evaluated by using the sphericalagap
radiation efficiencies of the ARMs (SHs) are given by [7] proach mentioned above, which is briefly reviewed in this-sub

i @ 1 section (for further details, refer to [6, 7]). Here, thisdebis
— ka)Q dhn’ (ka) dhy” (ka) @) called “discrete sphere”, in contrast to the “continuoukesp”
m d(ka)  d(ka) considered in the previous subsection.
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Let (r,0,¢) be, respectively, the radial coordinate, the - o y N -
zenith angle and the azimuth angle. Under free-field caoriti r 7 f f \ f.ff* *‘ ‘i‘
an oscillating spherical cap placed at the north pole of @ rig Y J | Y {* } l“ v Al | ‘
sphere yields an axisymmetric sound pressure field giveadjy [ v’ S V 4

tetrahedron hexahedron octahedron ~ dodecahedron  icosahedron

p(r,0) =S Anh'Y (kr)Pn(cos6 3
p(r.0) nz::O (k)P cos ) ®) Figure 2: Platonic solids and their midspheres.

whereP, (-) is the Legendre polynomial and

Lpeu For the tetrahedron, hexahedron, octahedron, dodecahedro

Ap = —5———[Pn-1(cos0o) — Pry1(cosbo)]  (4) and icosahedron, it can be demonstrated that the uppes limit
M of 6y so that the spherical caps do not overlap each other are
d (ka) 54.7°, 45°, 35.2°, 31.7° and20.9°, respectively. Then, the ra-

: . L ) tio 2ma®(1 — cos o)L/ (4ma®) gives the available fraction of

where. = v/—1, pis the fluid density is the sound speed is the spherical surface to mount the loudspeakers, nasel{%,

the radial velocity amplitude over the cap surface énds the 87.9%, 73.1%, 89.5% and 65.8%, respectively. It can be no-

half aperture_ angle_ of the cap. . . ticed that, among the Platonic solids having the same migsad
By SUperimposing the radla_ted fields fr_dm:a_ps d|_str|buted a, the dodecahedron presents the largest surface areabdwaila

over a rigid sphere and truncating the series given in (&) &t for assembling the drivers and therefore it is expectedttiiat

N, the sou_nd pressure and the radial acoustic velocity getera polyhedron will lead to the highest sound power for a giuen
by a spherical array become [7]

p(r,0,6) =u"BT(r)y(0, $) (5) 2.4. Synthesis of spherical harmonics
and This subsection reviews the synthesis of pure SH pattertiein
0.4) = uTET 0 6 far-field under free-field conditions by a compact sphefimadi-
] v(r6,9) =u (T). y.( ) . © speaker array. For an in-depth discussion, refer to [2, 8].7,
whereu is a column vector containing the velocities of the Since the synthesized SHs are preprogrammed basic direc-
L caps, the superscript T indicates the transpose yarsi a tivities which are intended to be later combined to achidee t

vector that containgN + 1)* complex-valued SHSs, so that  fin| desired directivity (e.g., the directivity of a musidastru-

Ymn (0, ¢) = Y;"(0,6), withmn = n” + n 414+ m. BandE ment), the synthesis of each SH must take into account the spa
are(N +1)* x L propagation matrices explicitly defined in [7], i distribution of both its magnitude and its phase. Thepest
which depend otka, 6o, pc, kr and on the positions of the caps  yay to perform this task is to minimize the Euclidean normhef t

over the sp_here. ) ) difference between the target SH pattern and the diregpat-
~ Foradiscrete sphere, it can be shown that the coupling ma-tern produced by the loudspeaker array, which is a well-know
trix introduced in subsection 2.1 is given by [7] convex optimization problem (least-squares) whose soiutan
9 be easily found. The least-squares problem applied to the SH
= 5 {BHE} ©) synthesis by a discrete sphere is summarized in the foltpwin
2peS LetY be an(N + 1)? x N, matrix containingN, spatial

wheres is the effective area of the vibrating surface. It can be Samples of the complex-valued SHs as rows (sampled verion o
demonstrated that is real and symmetric, as required, and that the vectory) andp be a row vector containingy/s spatial sam-
it does not depend onand pe. ples of the sound pressure field produced by the discreteesphe
By assuming that all spherical caps have the same area, thefvaluated at = ro, wherero >> a in order to ensure far-field
net vibration surface i§ = 2ra2(1 — cosfo)L. Hence, the  Propagation. Thus, application of (5) yields
matrix V presented in subsection 2.1 becomes [7] ToT
p=uBi(ro)Y 9)

V=l (8)

2L By referring to (9) and lettingf ,.» be themn-th row of

. . . . Y, the least-squares optimization problem can be formulased
wherel is the identity matrix. follows, which must be solved for each frequency due to the fa
Finally, the ARMs of the discrete sphere and the correspond- ,4:g depends on the non-dimensional parameterandr,

ing radiation efficiencies can be obtained by substitutifjgagd

(8) into (1) and solving the eigenvalue problem.

Although (7) and (8) hold for any discrete sphere made up
of identical spherical caps regardless of their positiorer the
sphere, this work deals only with discrete spheres whose cap ~ Now, letY (™) be a2n + 1 x N, matrix whose rows contain
are distributed over the sphere according to a Platonid s spatial samples of-th order SHs and)™ be anL x 2n + 1
ometry, i.e., the spatial orientation of each cap is madelegu matrix containing the optimum associated with each one of the
the vector normal to a face of the polyhedron. Figure 2 shows 2n + 1 rows of Y™, So, the maximum and minimum singular
the five Platonic solids and their midspheres. The midsphere values ofWz [YTBU™ — (Y(™)T] provide upper and lower
of a polyhedron is a sphere which is tangent to every edge of mean square error bounds associated with the subspace=dpann
the solid. The radius of the midsphere is called midradiuw. F by SHs of order [2, 7]. The directivity patterns associated with
acoustic purposes, a Platonic solid can be approximated by asuch bounds can be determined by examining the right-saingul
sphere whose radius, is the polyhedron’s midradius. vectors obtained in the singular value decomposition. wtdgth

min HUTBT(TO) Y —Ymn (10)
u 2
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noting thatW is an N; x N, diagonal matrix containing non-  ARMs have been arranged in descending order of their radiati

dimensional area weight factors applied to the spatial $zs1ip efficiencies evaluated in the lokw range.
order not to favor densely sampled regions on the sphere [7]. ,
The singular value d_e_comp05|_t|on mentloned_abovg can be 10 Continuous sphere: modes # 2 b 4
used to evaluate the ability of a discrete sphere in repiaduc Tetrahedron: modes # 2o 4 | -
target directivity patterns in the subspace spanned by $Hds o 100 Hexahedron: modes # 2 to 4
given ordem, which is known to be rotation invariant [2]. 2 Octahedron: modes # 2 to 4
c Dodecahedron: modes # 2 to 4
-g & Icosahedron: modes # 2 to 4
3. SIMULATION RESULTS = E
c
This section presents simulation results that permit a esisgn ‘% 103} i
between the five Platonic loudspeakers as directivity otiett e
sound sources. First, the radiation efficiencies of the ARMs &
are evaluated, which yield a quantitative description efltw- 10} 1
frequency limitation of such spherical radiators. Nexg tbot
mean square error (RMSE) in reproducing SHs are evaluated in B
order to take into account the spatial aliasing artifactetvie- 101071 10°
grade the directivity synthesis in the high-frequency eng ka

The results shown here were obtained by using the maxi-
mumd, values presented in the last paragraph of subsection 2.3.Figure 4: Radiation efficiency of the ARM # 2 to 4 of the con-
Spherical caps withi, as large a54.7° and45° are not expected  tinuous sphere and the Platonic loudspeakers.
to be good approximations of real driver membranes. Anyway,
for the sake of convenience, such values were adopted in the  Inspection of Figs. 3 to 7 reveals that the ARMs of the dis-

simulations for the tetrahedron and hexahedron, resgytiv crete spheres possess the grouping characteristic inrtievsay
as the continuous sphere — each one of these figures corre-

sponds to a radiation group except for Fig. 6, which presents
two radiation groups for the icosahedron. The continuous an

The eigenvalue problem described in subsection 2.1 waiedarr ~ discrete sphere curves present the same behavior atdoml-
out to obtain the ARMs of the Platonic solid loudspeakers and Ues and the radiation groups are well discriminated. Intemidi

their radiation efficiencies — witd andV given by (7) and (8). none of the Platonic loudspeakers is able to radiate more effi
ciently than the continuous sphere, as expected.

3.1. Radiation efficiency

0
10 Conti here- mode #1 107 Continuous sphere: modes #5 to 9
T0n IEUSUS -'T"P e;e.;:f e Hexahedron: modes # 5 to 6
Helrahedron: mOde i Octahedron: modes # 5 to 7
Oei(ah ed ron.. r’ﬂod e# ! > Dodecahedron: modes #5 to 9
3 Dcda e hrog- moae o1 g Icosahedron: modes # 5 to 9
c odecahedron: mode O 4
=10 1
% Icosahedron: mode # 1 L
o c
c 10} ] ]
S k5
= 8
.-6 E 1076 L .|
g @
10° ]
-2
10 N ’
4 . 10 10
10 10 ka

ka

Figure 5: Radiation efficiency of the ARM # 5 to 9 of the contin-
uous sphere, the dodecahedron and the icosahedron, aswell a
ARM # 5 to 6 of the cube and ARM # 5 to 7 of the octahedron.

Figure 3: Radiation efficiency of the ARM # 1 of the continuous
sphere and the Platonic loudspeakers.

Despite the fact tha€ depends orka andéo, it has been The ARMs of the Platonic loudspeakers give rise to far-field
observed that the eigenvalue analysis leads to the samé Eet o directivity patterns that match the real-valued SHs in tveka
orthogonal eigenvectors regardless of klaeandf,. Therefore, range [7], which explains the similar trend of the radiatédfi-

the results indicate that the ARMs of a discrete sphere basedciency curves observed for the continuous and discretesphe
on a Platonic solid do not depend é&qa, as is the case for a  The first radiation group (ARM # 1) yields a monopole, the sec-
continuous sphere. On the other hand, the radiation efti@en  ond one (ARMs # 2 to 4) yields dipoles, the third one (Fig. 5)
of the ARMs depend ofl, and strongly orka. Figures 3 to 7 leads to 2-nd order SHs, the fourth one (Fig. 6) yields 3-t&pr
show the radiation efficiencies of the ARMs in the léw-range. SHs and the fifth radiation group (Fig. 7) leads to 4-th ordés.S
For comparison, the radiation efficiencies of the ARMs of the Figures 3 to 7 show that the radiation efficiency curves of
continuous sphere (SHs) shown in Fig. 1 are repeated heee. Th the Platonic loudspeakers are very similar. Thus, as fahas t
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sound power is concerned, the dodecahedron seems to be theerns; both can be determined by examining the right-sargul
best choice among the Platonic solids because it possédsses t vectors obtained in the singular value decomposition.

largest available surface area to mount the drivers.

Continuous sphere: modes # 10 tq
Octahedron: mode # 8
Dodecahedron: modes # 10 to 12
Icosahedron: modes # 10 to 13
Icosahedron: modes # 14 to 16
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Figure 6: Radiation efficiency of the ARM # 10 to 16 of the
continuous sphere, ARM # 8 of the octahedron, ARM # 10 to 12
of the dodecahedron and ARM # 10 to 16 of the icosahedron.

6 Continuous sphere: modes # 17 to 25
[| = = = Icosahedron: modes # 17 to 20 -
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Figure 7: Radiation efficiency of the ARM # 17 to 25 of the
continuous sphere and the ARM # 17 to 20 of the icosahedron.

3.2. Synthesis error

The RMSE rises aka andn increases. As arule of thumb, it
is not possible to synthesize a pure SH of omder /L — 1 due
to spatial aliasing [6]. However, high order SHs might cisex
with low order ones in the radiated field from a discrete spher
This phenomenon is also due to spatial aliasing and takes pla
aska increases, leading to synthesis error as shown in Fig. 8.
Such a behavior can be explained by examining the radiation
efficiencies of the SHs, which were presented in Fig. 1.

Figure 1 shows that the efficiency curves of the radiation
groups are well discriminated in the lok range, so that sim-
ple directivity patterns radiate much more efficiently tttam-
plex ones. Thus, even if the discrete sphere excites higér ord
SHs due to spatial aliasing, they will not propagate to thie fa
field. Therefore, error in SH synthesis is small at lowvalues
provided thatr is made sufficiently large. On the other hand,
the efficiency curves of the SHs become closeta#ncreases,
so that spatial aliasing produces non-evanescent untiespat-
terns in the sound field, leading to synthesis error.

In order to reduce the spatial aliasing artifacts that dégra
the SH synthesis at high frequencies, the sphere radican
be made smaller. However, the low radiation efficiency at low
ka values imposes a constraint on the directivity synthediisen
low-frequency range, as said before. Thus, the design diersp
ical loudspeaker array for SH synthesis must be a compromise
between low and high frequency reproduction.

Figure 8 reveals that the dodecahedron yields the smallest
RMSE for the SH subspaces of orders= 0 andn = 1, while
it performs similarly to the icosahedron far= 2. However, un-
like the latter, the former is not able to provide full radtatcon-
trol for n = 3. Nevertheless, the icosahedron’s ability to synthe-
size functions in this subspace is limited to the low- andionael
ka ranges, and also the radiation efficiencies of its ARMs corre
sponding to the 3-rd order SHs are very low at lewwalues, as
shown in Fig. 6. Furthermore, the icosahedron gives thelsmal
est net radiation surface among the Platonic solids, whetea
dodecahedron presents the largest one. Hence, the sgntffiesi
functions in the subspace = 3 by an icosahedral array is re-
stricted to a narrow frequency band. Moreover, the extrateig
channels that must be handled when using an icosahedrar rath
than a dodecahedron might be critical in real-time appbcat
Thus, among the Platonic solids, the simulation resulteatd
that the dodecahedron is the best choice for directivityrobn

4. CONCLUSION

This work presented a comparative theoretical study of tree fi

Figure 8 shows the upper and lower bounds of the RMSE that Platonic loudspeakers with one driver per face as dirégtdan-

arise when synthesizing functions in the SH subspaces up to o

trolled sound sources. The comparison was made in terms of ra

dern = 3 by Platonic loudspeakers. The RMSE was computed diation efficiency and synthesis error, which limit radsaticon-

as described in subsection 2.4 by assuming the followingegal

Ns = 780, ro = 10a and N = 10. For each spherical array,
only one curve is presented for= 0 andn = 1 because com-
putations have shown that upper and lower error bounds éseth
subspaces are not distinguishable — the same is valid for2

trol at low and high frequencies, respectively.

The results indicated that the dodecahedron gives the best
compromise between number of channels, sound power and
complexity of the controllable patterns. Although the datin-
creases with the number of drivers, using more transduceas d

as far as the dodecahedron and the icosahedron are concernedot ensure a reduction in the synthesis error for low-ordé¢s.S

This means that a given directivity pattern in these sulepac
can be freely rotated without affecting the RMSE. However, f
n = 3 (andn = 2 for the tetrahedron, hexahedron and octahe-
dron), the error is not uniformly distributed over the sulrsg

so that there are unachievable patterns and well syntliegate

In this sense, the area and shape of the vibrating surface wer
proven to be more important than the number of drivers.

It is worth noting that the only benefit of using more drivers
per face is to provide control over some extra high-order SHs
within a very limited frequency range. No significant impeev
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Figure 8: Upper and lower bounds of the normalized root megrare error (RMSE) achieved in the synthesis of functionthén
subspaces spanned by spherical harmonics of orders 0, #,2 an

ment either in the sound power levels or in the synthesig erro
for low-order SHs is expected to be achieved.

Finally, the theory presented here holds also for spherical

loudspeakers other than Platonic ones. Moreover, the ARMs a
proach makes it possible to investigate non-sphericayato.

In this case, the radiation patterns and the ARMs can beeatkriv
by using the boundary element method, for example.
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