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ABSTRACT

Compact spherical loudspeaker arrays in the shape of Platonic
solids have been used as directivity controlled sound sources.
Such devices are commonly used to synthesize spherical har-
monic (SH) radiation patterns, which might be later combined
to produce different directivities. The SH synthesis presents
two main difficulties whose extent depends on the Platonic solid
used: large synthesis error at high frequencies due to spatial
aliasing and huge membrane velocities at low frequencies due
to low radiation efficiency. This work presents a comparative
theoretical study of the five Platonic loudspeakers. Their ability
to reproduce SHs and the radiation efficiencies of their acoustic
radiation modes are evaluated. It is shown that the dodecahe-
dron presents the best compromise between complexity of the
controllable patterns, number of channels and sound power.

1. INTRODUCTION

Compact spherical arrays of independent loudspeakers operating
at the same frequency range have been used as directivity con-
trolled sound sources. The transducers are usually distributed
over the spherical frame according to a Platonic solid geometry
to obtain a highly symmetrical configuration, so that the occur-
rence of preferred regions in the 3-D rendition space is reduced.

Hexahedral [1], dodecahedral [2, 3] and icosahedral [4]
sources with one driver per face have been reported in the liter-
ature (an icosahedron with six drivers per face was proposedin
[5]). Such devices are commonly used to synthesize pure spher-
ical harmonics (SHs) in the far-field under free-field conditions,
which might be later combined to produce different directivities.

The synthesis of pure SHs by a compact loudspeaker array
presents two main difficulties, namely, spatial aliasing inthe
high-frequency range and low radiation efficiency in the low-
frequency range. The former degrades the SHs synthesis [1, 2, 6]
and the latter implies huge membrane velocities in order to pro-
duce meaningful sound power levels [7]. The extent of these
problems is greatly affected by the position of each driver on the
array and by the number of transducers, i.e., the choice of the
Platonic solid is of major importance to the array performance.

Instead of using SHs as preprogrammed basic directivities,
the acoustic radiation modes (ARMs) of the loudspeaker array
can be used as a basis for directivity representation [7]. The
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ARMs are real orthogonal functions (or vectors, if the vibrating
body possesses a finite number of degrees of freedom) describ-
ing velocity patterns over the surface of a vibrating body. As far
as compact loudspeaker arrays are concerned, one of the main
advantages of the ARMs over the SHs is that they span a fi-
nite dimension subspace (the subspace dimension is the number
of drivers in the array) on which any radiation pattern the loud-
speaker array is able to produce can be projected with no approx-
imation error, whereas SHs span an infinite dimension subspace
so that truncation error generally arises. On the other hand, un-
like the ARMs, the SHs lead to a directivity format that does not
depend on the reproduction device and therefore the sound mate-
rial so encoded is compatible to different loudspeaker arrays [8].

In fact, the real SHs are the ARMs of the continuous
sphere [9], which is defined here as the sphere able to assume
any surface velocity pattern (infinite number of degrees of free-
dom). Moreover, at low frequencies, the ARMs of spherical ar-
rays give rise to far-field radiation patterns that match thereal
SHs, although the radiation efficiencies of an ARM and its cor-
responding SH are different [7]. In other words, at low frequen-
cies, the synthesis error in mimicking a given target directivity in
the far-field remains unchanged whether the ARMs or the SHs
are used. However, only the ARMs provide the correct radiation
efficiencies associated to each channel of the loudspeaker array.

This work presents a comparative theoretical study of the
five Platonic solid loudspeakers (with one driver per face) as di-
rectivity controlled sound sources. Their radiation patterns are
derived analytically by approximating each driver as a convex
spherical cap that oscillates with a constant radial velocity am-
plitude over its surface, as described in [6]. The ability ofthe
Platonic sources in reproducing pure SH patterns in the least-
squares sense is reviewed. In addition, the radiation efficiencies
of the ARMs of each Platonic source are computed in order to
evaluate the low-frequency constraint mentioned before.

2. THEORY

This section gives an overview of the main theory related to the
radiation control by a compact spherical loudspeaker array.

2.1. Acoustic radiation modes (ARMs)

This subsection presents a short introduction to the ARMs. For
further details, refer to [7, 9].
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For a vibrating body withL degrees of freedom, the ARMs
form a set ofL real orthogonal vectors that span the subspace
of the achievable velocity patterns over the body surface. The
ARMs can be obtained by the eigenvalue decomposition of an
operator related to the radiation efficiency of the vibrating body.

The radiation efficiency,σ, of a vibrating structure withL
degrees of freedom can be written as

σ(u) =
uHCu
uHVu

(1)

whereu is a column vector of velocity amplitude coefficients,
C is anL × L real symmetric matrix which couples the power
radiated by the elements ofu, V is anL × L real positive diag-
onal matrix which leads to the spatial mean-square velocityon
the structure surface and the superscript H indicates the complex
conjugate transpose. Throughout this work, unless otherwise
specified, lower case bold letters indicate vectors, while upper
case bold letters indicate matrices.

Notice that the radiation efficiency is in the form of the gen-
eralized Rayleigh quotient. Thus, the solution of the generalized
eigenvalue problemCψ = λVψ leads to a set ofL real orthog-
onal eigenvectorsψ1,ψ2, . . . ,ψL corresponding to real eigen-
values, ordered asλ1 ≥ λ2 ≥ . . . ≥ λL. These eigenvectors
are the ARMs and the eigenvalues are their radiation efficiency
coefficients, i.e.,σl ≡ σ(ψl) = λl.

It can be shown that these modes (ARMs) radiate sound en-
ergy independently, i.e., the total radiated sound power isgiven
by a linear combination of the sound power produced by each
mode. Because such a modal decomposition is closely related
to the radiation efficiency of the vibrating body, it permitsrank-
ing the expansion terms (ARMs) with respect to their radiation
efficiencies, so that a reduced number of active channels canbe
obtained by not driving inefficient modes. In addition, the ARMs
are only a function of frequency, the radiating structure geome-
try and the constraints the body is subjected to; they do not de-
pend on the source of excitation and on the mass and stiffnessof
the structure. Furthermore, the ARMs of some radiators (e.g., a
continuous sphere) are proven to be frequency independent.For
these reasons, the ARMs are a useful representation of vibration
patterns when one is mainly interested in the sound field radiated
by a vibrating structure.

2.2. Continuous sphere

Before considering the spherical loudspeaker arrays, it ishelpful
to investigate some acoustical aspects of the sound field radiated
by a “continuous sphere”, which was defined in section 1.

It was demonstrated in [9] that the real-valued SHs are the
ARMs of the continuous sphere. In this case, since the vibrating
body has an infinite number of degrees of freedom, the ARMs
are functions rather than vectors. Moreover, there is an exact
correspondence between each ARM and the radiation pattern it
produces, which means that when the surface velocity distribu-
tion over the sphere matches a given SH function, the angular
distribution of the radiated sound pressure field is also given by
the same SH, regardless of frequency. Such a correspondence
does not hold for the spherical loudspeaker arrays.

Let n ∈ N andm ∈ Z : |m| ≤ n index the SHs. Then, the
radiation efficiencies of the ARMs (SHs) are given by [7]

σmn =

(

(ka)2
dh

(1)
n (ka)

d(ka)

dh
(2)
n (ka)

d(ka)

)

−1

(2)

wheremn = n2 + n + 1 + m is used for linear indexing of the
SHs,k is the wave number,a is the sphere radius andh(1,2)

n (·)
are the spherical Hankel functions of the first and second kind.

Equation (2) shows thatσmn does not depend onm and is
only a function of the non-dimensional parameterka for SHs of
a given ordern. The radiation efficiencies for the first 49 ARMs
(SHs up to ordern = 6) are presented in Fig. 1.
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Figure 1: Radiation efficiencies of the first 49 acoustic radiation
modes of the continuous sphere (spherical harmonics).

Figure 1 illustrates the grouping characteristic of the acous-
tic radiation modes discussed in [9]. The number of modes
within each group is2n+1, i.e., 1 (n = 0), 3 (n = 1), 5 (n = 2),
7 (n = 3), 9 (n = 4), etc. It is shown thatσmn increases with
ka and decreases withn. Moreover, at lowka values, the radia-
tion efficiency is strongly affected byn, so that simple directiv-
ity patterns (lower order SHs) radiate much more efficientlythan
complex ones. This result pinpoints the main difficulty concern-
ing sound radiation reproduction in the low-frequency range: the
sphere surface must present a huge velocity amplitude in order
to produce complex directivity patterns with meaningful sound
power levels.

It is worth noting thatσmn can be increased over a given
frequency range by increasinga. However, for compact spheri-
cal loudspeaker arrays, it is known that a larger sphere limits the
radiation control in the high-frequency range due to spatial alias-
ing artifacts. Therefore a compromise must be sought between
low and high frequency reproduction.

2.3. Discrete sphere

Some attempts have been made to predict the interaction of the
radiated sound fields produced by the independent drivers ofa
compact spherical loudspeaker array [2, 3, 6, 7, 10]. For themo-
ment, the spherical caps approach proposed in [6] is the most
elaborate radiation prediction model for a spherical array, in
which the drivers of the array are modeled as convex spherical
caps, each one oscillating with a constant radial velocity am-
plitude over its surface. This model presents the advantageof
having an analytical solution and is inspired in a previous work
dealing with a single driver mounted on a rigid sphere [11].

In this work, the radiation patterns of compact spherical
loudspeaker arrays are evaluated by using the spherical caps ap-
proach mentioned above, which is briefly reviewed in this sub-
section (for further details, refer to [6, 7]). Here, this model is
called “discrete sphere”, in contrast to the “continuous sphere”
considered in the previous subsection.



Proc. of the 2nd International Symposium on Ambisonics and Spherical Acoustics May 6-7, 2010, Paris, France

Let (r, θ, φ) be, respectively, the radial coordinate, the
zenith angle and the azimuth angle. Under free-field conditions,
an oscillating spherical cap placed at the north pole of a rigid
sphere yields an axisymmetric sound pressure field given by [12]

p̂(r, θ) =
∞
∑

n=0

Anh(1)
n (kr)Pn(cos θ) (3)

wherePn(·) is the Legendre polynomial and

An =
ιρcu

2
dh

(1)
n (ka)

d (ka)

[Pn−1(cos θ0) − Pn+1(cos θ0)] (4)

whereι =
√
−1, ρ is the fluid density,c is the sound speed,u is

the radial velocity amplitude over the cap surface andθ0 is the
half aperture angle of the cap.

By superimposing the radiated fields fromL caps distributed
over a rigid sphere and truncating the series given in (3) atn =
N , the sound pressure and the radial acoustic velocity generated
by a spherical array become [7]

p(r, θ, φ) = uTBT(r) y(θ, φ) (5)

and
υ(r, θ, φ) = uTET(r) y(θ, φ) (6)

where u is a column vector containing the velocities of the
L caps, the superscript T indicates the transpose andy is a
vector that contains(N + 1)2 complex-valued SHs, so that
ymn(θ, φ) ≡ Y m

n (θ, φ), with mn = n2 + n + 1 + m. B andE
are(N +1)2 ×L propagation matrices explicitly defined in [7],
which depend onka, θ0, ρc, kr and on the positions of the caps
over the sphere.

For a discrete sphere, it can be shown that the coupling ma-
trix introduced in subsection 2.1 is given by [7]

C =
r2

2ρcS
ℜ
{

BHE
}

(7)

whereS is the effective area of the vibrating surface. It can be
demonstrated thatC is real and symmetric, as required, and that
it does not depend onr andρc.

By assuming that all spherical caps have the same area, the
net vibration surface isS = 2πa2(1 − cos θ0)L. Hence, the
matrixV presented in subsection 2.1 becomes [7]

V =
1

2L
I (8)

whereI is the identity matrix.
Finally, the ARMs of the discrete sphere and the correspond-

ing radiation efficiencies can be obtained by substituting (7) and
(8) into (1) and solving the eigenvalue problem.

Although (7) and (8) hold for any discrete sphere made up
of identical spherical caps regardless of their positions over the
sphere, this work deals only with discrete spheres whose caps
are distributed over the sphere according to a Platonic solid ge-
ometry, i.e., the spatial orientation of each cap is made equal to
the vector normal to a face of the polyhedron. Figure 2 shows
the five Platonic solids and their midspheres. The midsphere
of a polyhedron is a sphere which is tangent to every edge of
the solid. The radius of the midsphere is called midradius. For
acoustic purposes, a Platonic solid can be approximated by a
sphere whose radius,a, is the polyhedron’s midradius.

Figure 2: Platonic solids and their midspheres.

For the tetrahedron, hexahedron, octahedron, dodecahedron
and icosahedron, it can be demonstrated that the upper limits
of θ0 so that the spherical caps do not overlap each other are
54.70, 450, 35.20, 31.70 and20.90, respectively. Then, the ra-
tio 2πa2(1 − cos θ0)L/(4πa2) gives the available fraction of
the spherical surface to mount the loudspeakers, namely,84.4%,
87.9%, 73.1%, 89.5% and65.8%, respectively. It can be no-
ticed that, among the Platonic solids having the same midradius
a, the dodecahedron presents the largest surface area available
for assembling the drivers and therefore it is expected thatthis
polyhedron will lead to the highest sound power for a givena.

2.4. Synthesis of spherical harmonics

This subsection reviews the synthesis of pure SH patterns inthe
far-field under free-field conditions by a compact sphericalloud-
speaker array. For an in-depth discussion, refer to [2, 6, 7,8].

Since the synthesized SHs are preprogrammed basic direc-
tivities which are intended to be later combined to achieve the
final desired directivity (e.g., the directivity of a musical instru-
ment), the synthesis of each SH must take into account the spa-
tial distribution of both its magnitude and its phase. The simplest
way to perform this task is to minimize the Euclidean norm of the
difference between the target SH pattern and the directivity pat-
tern produced by the loudspeaker array, which is a well-known
convex optimization problem (least-squares) whose solution can
be easily found. The least-squares problem applied to the SHs
synthesis by a discrete sphere is summarized in the following.

Let Y be an(N + 1)2 × Ns matrix containingNs spatial
samples of the complex-valued SHs as rows (sampled version of
the vectory) andp be a row vector containingNs spatial sam-
ples of the sound pressure field produced by the discrete sphere
evaluated atr = r0, wherer0 >> a in order to ensure far-field
propagation. Thus, application of (5) yields

p = uTBT(r0) Y (9)

By referring to (9) and lettingYmn be themn-th row of
Y, the least-squares optimization problem can be formulatedas
follows, which must be solved for each frequency due to the fact
thatB depends on the non-dimensional parameterska andkr,

min
u

∥

∥

∥
uTBT(r0) Y − Ymn

∥

∥

∥

2
(10)

Now, letY(n) be a2n + 1×Ns matrix whose rows contain
spatial samples ofn-th order SHs andU(n) be anL × 2n + 1
matrix containing the optimumu associated with each one of the
2n + 1 rows ofY(n). So, the maximum and minimum singular
values ofW

1

2 [YTBU(n) − (Y(n))T] provide upper and lower
mean square error bounds associated with the subspace spanned
by SHs of ordern [2, 7]. The directivity patterns associated with
such bounds can be determined by examining the right-singular
vectors obtained in the singular value decomposition. It isworth
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noting thatW is anNs × Ns diagonal matrix containing non-
dimensional area weight factors applied to the spatial samples in
order not to favor densely sampled regions on the sphere [7].

The singular value decomposition mentioned above can be
used to evaluate the ability of a discrete sphere in reproducing
target directivity patterns in the subspace spanned by SHs of a
given ordern, which is known to be rotation invariant [2].

3. SIMULATION RESULTS

This section presents simulation results that permit a comparison
between the five Platonic loudspeakers as directivity controlled
sound sources. First, the radiation efficiencies of the ARMs
are evaluated, which yield a quantitative description of the low-
frequency limitation of such spherical radiators. Next, the root
mean square error (RMSE) in reproducing SHs are evaluated in
order to take into account the spatial aliasing artifacts which de-
grade the directivity synthesis in the high-frequency range.

The results shown here were obtained by using the maxi-
mumθ0 values presented in the last paragraph of subsection 2.3.
Spherical caps withθ0 as large as54.70 and450 are not expected
to be good approximations of real driver membranes. Anyway,
for the sake of convenience, such values were adopted in the
simulations for the tetrahedron and hexahedron, respectively.

3.1. Radiation efficiency

The eigenvalue problem described in subsection 2.1 was carried
out to obtain the ARMs of the Platonic solid loudspeakers and
their radiation efficiencies — withC andV given by (7) and (8).
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Continuous sphere: mode # 1
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Figure 3: Radiation efficiency of the ARM # 1 of the continuous
sphere and the Platonic loudspeakers.

Despite the fact thatC depends onka andθ0, it has been
observed that the eigenvalue analysis leads to the same set of L
orthogonal eigenvectors regardless of theka andθ0. Therefore,
the results indicate that the ARMs of a discrete sphere based
on a Platonic solid do not depend onka, as is the case for a
continuous sphere. On the other hand, the radiation efficiencies
of the ARMs depend onθ0 and strongly onka. Figures 3 to 7
show the radiation efficiencies of the ARMs in the low-ka range.
For comparison, the radiation efficiencies of the ARMs of the
continuous sphere (SHs) shown in Fig. 1 are repeated here. The

ARMs have been arranged in descending order of their radiation
efficiencies evaluated in the low-ka range.
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Continuous sphere: modes # 2 to 4
Tetrahedron: modes # 2 to 4
Hexahedron: modes # 2 to 4
Octahedron: modes # 2 to 4
Dodecahedron: modes # 2 to 4
Icosahedron: modes # 2 to 4

Figure 4: Radiation efficiency of the ARM # 2 to 4 of the con-
tinuous sphere and the Platonic loudspeakers.

Inspection of Figs. 3 to 7 reveals that the ARMs of the dis-
crete spheres possess the grouping characteristic in the same way
as the continuous sphere — each one of these figures corre-
sponds to a radiation group except for Fig. 6, which presents
two radiation groups for the icosahedron. The continuous and
discrete sphere curves present the same behavior at lowka val-
ues and the radiation groups are well discriminated. In addition,
none of the Platonic loudspeakers is able to radiate more effi-
ciently than the continuous sphere, as expected.
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Continuous sphere: modes # 5 to 9
Hexahedron: modes # 5 to 6
Octahedron: modes # 5 to 7
Dodecahedron: modes # 5 to 9
Icosahedron: modes # 5 to 9

Figure 5: Radiation efficiency of the ARM # 5 to 9 of the contin-
uous sphere, the dodecahedron and the icosahedron, as well as
ARM # 5 to 6 of the cube and ARM # 5 to 7 of the octahedron.

The ARMs of the Platonic loudspeakers give rise to far-field
directivity patterns that match the real-valued SHs in the low-ka
range [7], which explains the similar trend of the radiationeffi-
ciency curves observed for the continuous and discrete spheres.
The first radiation group (ARM # 1) yields a monopole, the sec-
ond one (ARMs # 2 to 4) yields dipoles, the third one (Fig. 5)
leads to 2-nd order SHs, the fourth one (Fig. 6) yields 3-rd order
SHs and the fifth radiation group (Fig. 7) leads to 4-th order SHs.

Figures 3 to 7 show that the radiation efficiency curves of
the Platonic loudspeakers are very similar. Thus, as far as the
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sound power is concerned, the dodecahedron seems to be the
best choice among the Platonic solids because it possesses the
largest available surface area to mount the drivers.
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Continuous sphere: modes # 10 to 16
Octahedron: mode # 8
Dodecahedron: modes # 10 to 12
Icosahedron: modes # 10 to 13
Icosahedron: modes # 14 to 16

Figure 6: Radiation efficiency of the ARM # 10 to 16 of the
continuous sphere, ARM # 8 of the octahedron, ARM # 10 to 12
of the dodecahedron and ARM # 10 to 16 of the icosahedron.
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Continuous sphere: modes # 17 to 25
Icosahedron: modes # 17 to 20

Figure 7: Radiation efficiency of the ARM # 17 to 25 of the
continuous sphere and the ARM # 17 to 20 of the icosahedron.

3.2. Synthesis error

Figure 8 shows the upper and lower bounds of the RMSE that
arise when synthesizing functions in the SH subspaces up to or-
dern = 3 by Platonic loudspeakers. The RMSE was computed
as described in subsection 2.4 by assuming the following values:
Ns = 780, r0 = 10a andN = 10. For each spherical array,
only one curve is presented forn = 0 andn = 1 because com-
putations have shown that upper and lower error bounds for these
subspaces are not distinguishable — the same is valid forn = 2
as far as the dodecahedron and the icosahedron are concerned.
This means that a given directivity pattern in these subspaces
can be freely rotated without affecting the RMSE. However, for
n = 3 (andn = 2 for the tetrahedron, hexahedron and octahe-
dron), the error is not uniformly distributed over the subspace,
so that there are unachievable patterns and well synthesized pat-

terns; both can be determined by examining the right-singular
vectors obtained in the singular value decomposition.

The RMSE rises aska andn increases. As a rule of thumb, it
is not possible to synthesize a pure SH of ordern >

√
L−1 due

to spatial aliasing [6]. However, high order SHs might co-exist
with low order ones in the radiated field from a discrete sphere.
This phenomenon is also due to spatial aliasing and takes place
aska increases, leading to synthesis error as shown in Fig. 8.
Such a behavior can be explained by examining the radiation
efficiencies of the SHs, which were presented in Fig. 1.

Figure 1 shows that the efficiency curves of the radiation
groups are well discriminated in the low-ka range, so that sim-
ple directivity patterns radiate much more efficiently thancom-
plex ones. Thus, even if the discrete sphere excites high order
SHs due to spatial aliasing, they will not propagate to the far-
field. Therefore, error in SH synthesis is small at lowka values
provided thatr0 is made sufficiently large. On the other hand,
the efficiency curves of the SHs become closer aska increases,
so that spatial aliasing produces non-evanescent undesirable pat-
terns in the sound field, leading to synthesis error.

In order to reduce the spatial aliasing artifacts that degrade
the SH synthesis at high frequencies, the sphere radiusa can
be made smaller. However, the low radiation efficiency at low
ka values imposes a constraint on the directivity synthesis inthe
low-frequency range, as said before. Thus, the design of a spher-
ical loudspeaker array for SH synthesis must be a compromise
between low and high frequency reproduction.

Figure 8 reveals that the dodecahedron yields the smallest
RMSE for the SH subspaces of ordersn = 0 andn = 1, while
it performs similarly to the icosahedron forn = 2. However, un-
like the latter, the former is not able to provide full radiation con-
trol for n = 3. Nevertheless, the icosahedron’s ability to synthe-
size functions in this subspace is limited to the low- and medium-
ka ranges, and also the radiation efficiencies of its ARMs corre-
sponding to the 3-rd order SHs are very low at lowka values, as
shown in Fig. 6. Furthermore, the icosahedron gives the small-
est net radiation surface among the Platonic solids, whereas the
dodecahedron presents the largest one. Hence, the synthesis of
functions in the subspacen = 3 by an icosahedral array is re-
stricted to a narrow frequency band. Moreover, the extra eight
channels that must be handled when using an icosahedron rather
than a dodecahedron might be critical in real-time applications.
Thus, among the Platonic solids, the simulation results indicate
that the dodecahedron is the best choice for directivity control.

4. CONCLUSION

This work presented a comparative theoretical study of the five
Platonic loudspeakers with one driver per face as directivity con-
trolled sound sources. The comparison was made in terms of ra-
diation efficiency and synthesis error, which limit radiation con-
trol at low and high frequencies, respectively.

The results indicated that the dodecahedron gives the best
compromise between number of channels, sound power and
complexity of the controllable patterns. Although the latter in-
creases with the number of drivers, using more transducers does
not ensure a reduction in the synthesis error for low-order SHs.
In this sense, the area and shape of the vibrating surface were
proven to be more important than the number of drivers.

It is worth noting that the only benefit of using more drivers
per face is to provide control over some extra high-order SHs
within a very limited frequency range. No significant improve-
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Figure 8: Upper and lower bounds of the normalized root mean square error (RMSE) achieved in the synthesis of functions inthe
subspaces spanned by spherical harmonics of orders 0, 1, 2 and 3.

ment either in the sound power levels or in the synthesis error
for low-order SHs is expected to be achieved.

Finally, the theory presented here holds also for spherical
loudspeakers other than Platonic ones. Moreover, the ARMs ap-
proach makes it possible to investigate non-spherical arrays too.
In this case, the radiation patterns and the ARMs can be derived
by using the boundary element method, for example.
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