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ABSTRACT

“Compressive Sampling” proposes a new framework on how
to effectively sample information (signals or any other physical
phenomena) with a reduced number of sensors. The main idea
behind this concept is that if the information to be sampled can
be sparsely described in a space that is incoherent to the mea-
surement space, then this information can be restored by `1 min-
imization. In this paper we describe the Compressive Sampling
framework and present one example of application, namely, to
sample an outgoing acoustic field with a distributed spherical
array composed of a reduced number of sensing microphones
without suffering from aliasing errors.

1. INTRODUCTION

“Compressive Sampling”, also called “Compressed Sensing” or
simply CS, postulates that the widely accepted Shannon’s sam-
pling theorem is a sufficient but not a necessary condition for
the sampling theory, i.e., CS states that if a signal of interest can
be described by a sparse set of basis, then it can be sampled at a
rate lower than twice its maximum frequency (sub-Nyquist-rate).
The ability of CS to recover data from fewer measurement points
than the traditional sampling techniques relies on two assump-
tions: the sparseness of the signal of interest when described by
a basis Ψ and the incoherence between the measurement basis
Φ and the representation basis Ψ. Both assumptions will be dis-
cussed later in this paper.

The CS framework relies on linear programming algorithms
to recover a sparse representation of the signal. This is achieved
by minimizing the `1 norm of the observation vector instead of
the in acoustics more commonly used `2 norm. The `1 norm has
been sporadically used in the field of acoustics, especially when
dealing with source separation and reflection/echo estimation
and cancellation. In a recent work from Hörchens and de Vries
a spherical microphone array was used to identify the direction
and time of arrival of wall reflection in a concert hall [1]. Even
though they did not explicitly relate their work to the CS theory,
it is possible to directly relate one of the strategies presented in
that paper to CS, since they seek with `1 minimization a set of
sparse coefficients in a basis (plane wave basis) incoherent to the
original measurement basis (spherical array basis).

As far as the authors are concerned, the first two works to ex-
plicitly apply the CS framework to spatial audio were published
independently in October 2009. In their work Epain, Jin and
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van Schaik shortly presents the concepts of CS and describes the
application of CS to spatial sound field analysis (with a compact
microphone array) and synthesis (with a loudspeaker ring) [2].
Lilis, Angelosante and Giannakis published their results later
that same month [3]. They applied the concept of CS to Wave
Field Synthesis (WFS) reproduction, achieving an improved per-
formance when not every loudspeaker of the array is simultane-
ously active. It is interesting to emphasize their statement that a
recursive version of the `1 minimization can be implemented in
real time.

In this paper we first provide a review of the compressive
sampling framework. We then present an example of CS applied
to spatial audio, dual to the results presented in [2]. We consider
a distributed microphone array used to measure the radiation pat-
tern of a source located at the center of this array.

2. COMPRESSIVE SAMPLING

The first works describing Compressive Sampling were devoted
to image reconstruction and later came applications to recon-
struction of signals from noisy measurements. Candès and
Wakin give a very didactic example of the idea behind CS: in
digital image acquisition, a huge amount of data is collected to
later be thrown away by compression algorithms, so to allow
easy storage and facilitate file exchange. It seems contradictory
that consumers lust for cameras with high pixel resolution only
to later compress the image to a hundredth of its original size
in order to efficiently store these photos. What happens in this
example is that a huge amount of data (pixels) acquired by the
camera is transformed into another domain, e.g. the DCT, in
which a small percentage of the transform coefficients contain-
ing the greater part of the total energy are kept and all other co-
efficients are discarded. Compressive Sampling tries to skip the
steps of acquiring a great amount of pixels and then compress-
ing them by trying to directly sample only the relevant (highly
energetic) information about the image (or signal) of interest. In
a nutshell, CS directly converts analog data into an already com-
pressed digital form, so to obtain very compact signals from a
reduced number of sensors. After the acquisition process, one
has only to accordingly “decompress” the compact data to re-
store the originally measured data [4].

Another possible application of CS is to inverse problems,
like the problems commonly dealt with in spherical acoustics.
Consider, e.g., one wishes to estimate the radiation pattern of
a sound source from M sensing points. This is usually done by
calculating the spherical harmonics (SH) coefficients that deliver
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the best approximation at the sensing points and interpolate the
remaining surface from these coefficients.

However, when the number of sensing positions is smaller
than the number of SH basis necessary to describe this radiation
pattern, we have infinite many surfaces that match the measured
values and we cannot be sure which of these surfaces we just
sampled. Nevertheless, if the basis for the sensing domain Φ
(e.g. sampled sphere) and the projection domain Ψ (e.g. spher-
ical harmonics) are incoherent, then an efficient sensing is pos-
sible; meaning that the exact sound field could be reconstructed
from a reduced number of microphones, as long as this field can
be sparsely described in the given representation basis. The CS
framework senses the signal at a low sampling rate, without try-
ing to completely comprehend the signal of interest, and later
relies on computational power to recover the signal from an ap-
parently insufficient set of measurements [4].

To allow nearly perfect signal reconstruction from a reduced
number of sensors CS heavily relies in two principles, high-
lighted in the previous paragraph: sparseness (a characteristic
of the signal of interest) and incoherence (a characteristic of the
sampling strategy).

2.1. Sparseness

A vector of length N is said to be sparse if just S < N of its
elements are non-zero. If the remaining elements are not zero
but their energy is considerably lower than that of the first S
more energetic coefficients, then the vector is called compress-
ible. The concept of sparseness is important in the CS frame-
work since CS is only applicable to signals that can be concisely
(sparsely) described in the representation basis Ψ.

We give two examples of sparse/compressible signals in the
spatial acoustic context. In [2] the authors state that often a
sound field is generated by one or a few sound sources. If
this sound fields is represented in a “source” or “plane wave”
domain, then this representation is sparse. Another example
would be the directivity of an omnidirectional dodecahedron
loudspeaker when represented in the spherical harmonics do-
main. In low frequencies it radiates omnidirectionally, being de-
scribed by only one SH coefficient. At higher frequencies it no
longer radiates omnidirectionally, but its radiation pattern can
still be described by a few SH coefficients. For instance if we
measure its radiation at 20 kHz, a frequency region where its
radiation is nowhere near omnidirectional, and calculate the SH
coefficients up to order 40 we verify that 95% of the radiated
energy is concentrated on 106 out of 1681 coefficients, thus a
compressible representation.

2.2. Incoherence

We are accustomed to the concept of time and frequency do-
mains and it is common knowledge that an impulse in time do-
main has a wide-band representation in frequency domain. If
the description of one event is local (i.e. sparse) in one domain
while spread (i.e. dense) in the other domain, then these two do-
mains can be called incoherent. Coherence between two bases is
defined as

µ (Ψ,Φ) =
√
n ·max

k,j
|〈φk, ψj〉| . (1)

Thus, one can say that time and frequency domains are incoher-
ent as their basis pair present µ (Ψ,Φ) = 1, yielding minimum
coherence (or maximum incoherence).

For applications such as image processing, wavelets and
noiselets bases are commonly used to provide incoherent sam-
pling. In this paper we will restrain ourselves to the traditional
basis of spherical harmonics and Dirac impulse distribution on
the sphere, even though we are aware research has already been
done with wavelet like spherical basis [5].

3. MINIMIZATION

We strive to estimate a vector of lengthN ′ out ofM < N ′ mea-
surements, leading to an under-determined system of equations.
As well known, such systems have an infinite number of solu-
tions. Taking the solution with the minimal `2 norm provides
the minimum energy solution and can be easily calculated. On
the other hand, when using incoherent basis a sparse solution is
expected and a norm that promotes sparsity should be preferred.

Minimization of the `0 norm would be the obvious choice
when a sparse response is expected. But to solve a `0 mini-
mization is at the moment still a very time consuming opera-
tion, based on iterative algorithms or greedy heuristic. Mean-
while, `1 minimization can be efficiently calculated using linear
programming methods and also delivers sparse results (`1 min-
imization has been in use for almost 40 years as a sparsity pro-
moting norm). Even though `1 is a softer requirement for obtain-
ing sparse solutions, Candès and Wakin argues that if the vector
is sufficiently sparse, recovery via `1 minimization is provably
exact [4].

4. RANDOM SENSING

In [4] the authors discuss the “restricted isometry property”
(RIP). Briefly speaking, matrices that obey the RIP preserve, at a
certain degree, the length of a multiplied sparse vector; implying
that such vectors cannot be in its null space.

CS theory argues that an ideal sensing matrix should obey
the RIP. In [4] some matrices that obey RIP are discussed and
a special focus is placed at randomness. The main property of
matrices that obey the RIP condition is that, regardless of hav-
ing linearly dependent columns, subsets from these columns are
nearly orthogonal. Another way to generate matrices that obey
the RIP is to take an orthogonal matrix and randomly select M
of its rows. In the spherical harmonic case this is equivalent to
randomly selecting M sampling points on the sphere. A matrix
with this format will obey the RIP with elevated probability as
long as

M ≥ C · S log
(
N ′/S

)
, (2)

where C is a constant dependent on the matrix (but usually
small).

Candès and Wakin conclude that “randomized matrices to-
gether with `1 minimization is a near-optimal sensing strategy”
[4]. This is the framework we will apply in the context of spher-
ical harmonics in the following sections.

5. COMPRESSIVE SAMPLING
IN THE SPHERICAL DOMAIN

In the next section we consider a sound source placed in the cen-
ter of a sphere. The sound field radiated by the source in the far-
field can be described by the spherical harmonics coefficients
p̂ of length N . The sound pressure generated at the sampling
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Figure 1: Variation of the estimation error with the sparseness level δ averaged over 50 trials. p̂ had its length fixed to N = 100. There
were S = 32 sampling points and no additive noise. (a) Regularly distributed array. (b) Randomly distributed array.

points is
p = Y p̂, (3)

where Y is the orthonormal spherical harmonic basis. Our in-
terest is to estimate the spherical harmonics coefficients p̂ from
the measurement vector p. This estimation is usually performed
as

p̂′ = Y †p, (4)

where Y † is the pseudoinverse of Y and p̂′ is the approximation
of p̂ in the `2 sense. We can, instead, use a convex optimization
program to minimize the `1-norm1 of p̂′:

min
p̂′∈RN

∥∥p̂′∥∥
1

subject to
∥∥Y p̂′ − p

∥∥
2
≤ ε. (5)

ε is a small constant proportional to the measurement noise.
The normalized error between original and the estimated

values is defined as

e
4
=
‖p̂′ − p̂‖2
‖p̂‖2

. (6)

6. RESULTS

Epain et al. presented an example of a compact microphone ar-
ray for incoming waves using the ideas from CS [2]. Here we
would like to tackle its dual problem, i.e., a distributed micro-
phone array to sense outgoing waves. In the following example
we consider a spherical microphone array with the sound source
positioned exactly at its center2. We wish to estimate the source’s
radiation pattern up to higher orders from a reduced number of
sample points, using the CS framework to avoid aliasing errors.

When the pseudoinverse is used to evaluate measurements
from an array with a reduced number of microphones, e.g.
32 units, we are restricted to work with a relatively small
SH order. Usually one would calculate only up to order
4 =

(⌊√
32

⌋
− 1

)
. If we attempt to calculate p̂′ at higher SH

orders we will suffer from aliasing and energy will migrate to
the higher order coefficients [7], resulting in an urchin-like plot,
since this is the least energetic surface that contains the measured
points. When, instead of minimizing the `2-norm, we minimize
Eq. 5, we can estimate up to higher orders without the effect of

1‖x‖1
4
=

∑
i |xi|

2Sources out of center will not be dealt with here. For more details
about this topic, please refer to [6].

aliasing, again, only if the measured surface have a sparse rep-
resentation in the used representation domain (in this case the
spherical harmonics domain). If instead of a regular grid a ran-
domly distributed array is used, an even better approximation is
achieved.

To better illustrate the affirmations made in the last para-
graph we present here a numeric example. We first analyze the
influence of the vector’s sparseness to the estimation error. We
define N ′ = N = 100 (SH order 9) and we sample at M = 32
points. For each value of S the index and (complex) value of
the S non-zero coefficients is randomly chosen. We calculate
p̂′ using four different algorithms: (1) pseudoinverse, (2) MAT-
LAB operator “\”, which delivers a rank limited `2 minimiza-
tion, (3) `1 minimization using the NESTA toolbox [8] and (4)
reweighted `1 minimization, which approximates the `0 solu-
tion.

Fig. 1 displays to each value of S the mean value with stan-
dard variation from 50 trials. We verify that `1 and `0 minimiza-
tion deliver considerably better results than the `2 minimization
when p̂ is sufficiently sparse. CS allows the estimation of a vec-
tor of size N = 100 out of 32 sample points without suffering
from aliasing if S < 10. Also important to note is that a reg-
ular distribution of the sample points, as presented in Fig. 1(a),
has a performance significantly worse than when the points are
randomly distribute, as seen in Fig. 1(b).

The results present in Fig. 1 were simulated in a noiseless
fashion. The next question that arises is if CS is robust to noise.
We now repeat the simulation fixing S = 9 and varying the
signal-to-noise ratio (SNR). Sample points were randomly dis-
tributed. The results presented in Fig. 2 shows that the perfor-
mance of all tested minimization algorithms is linearly propor-
tional to the SNR. The performance of the `1 and `0 minimiza-
tion for low SNR values saturates at the chosen value of ε.

So far the simulations were performed for a fixed value of
N ′. But if we do not know the size of the support of p̂, than we
cannot a priori decide the value of N ′. The same simulation is
repeated once again, with the length of p̂ fixed to N = 49 and
S = 9, M = 32 and SNR = 40 dB. Fig. 3 shows how the er-
ror varies with the length of p̂′ (given in SH order =

√
N ′ − 1).

We see that for N ′ < N all algorithms perform identically, as
this is still an over-determined system and all algorithms mini-
mize ‖Y p̂′ − p‖2. At N ′ = 6 the `2 minimization algorithms
reach a minimum and for values of N ′ > N the estimation er-
ror increases, caused by the aliasing effect already previously
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Figure 2: Variation of the estimation error with the signal-to-
noise level averaged over 50 trials. p̂ had its length fixed to
N = 100 and S = 6 non-zero elements. There were S = 32
randomly distributed sampling points.

discussed. Meanwhile, the sparsity promoting minimization al-
gorithms achieve a much better performance, which furthermore
does not degrade as quickly as the `2 minimization does. This
example indicates that CS is relatively robust to mistakes in es-
timating the order of p̂.

We did not vary the value of M . It should be clear that in-
creasing the value ofM will reduce the approximation error; the
interesting result is that for the same number of sampling points,
a random distribution is likely to have a better performance than
regularly distributed sensing points. It is also important to men-
tion that the time taken to calculate the `1 and `2 minimization
usually lies in the same order of magnitude.

7. DISCUSSION

In this paper we showed how Compressive Sampling can be used
to measure the radiation pattern of sound sources with a reduced
number of sensors. For the example discussed in this paper,
spherical harmonics can be selected as an incoherent domain
and `1 minimization can correctly recover the sparse spherical
harmonic coefficients that describe the radiated sound field us-
ing three times fewer sensors than that required by traditional `2
minimization.

This result can be applied to reduce the time necessary to
measure directivity balloons of loudspeakers or to reduce the
number of points needed to measure individual “head-related
transfer functions” (HRTFs). In this case, spherical harmon-
ics (SH) might not be an adequate basis, since high frequency
HRTFs cannot be considered sparse in the SH domain. A set
of basis extracted from the “principal component analysis” of a
group of individual HRTFs, might be a good candidate for an
incoherent representation domain.

For the dual problem of sound field synthesis with a compact
loudspeaker array, CS might also deliver an interesting counter-
point to the usual `2 minimization, as a solution with a reduced
number of active loudspeakers would be striven. As shown by
Epain et al. [2] and Lilis et al. [3] for the distributed source case,
such a solution may deliver a sound field with a wider region of
similarity to the original field.
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Figure 3: Variation of the estimation error with the order of the
estimation vector averaged over 50 trials. p̂ had its length fixed
to N = 49 and S = 9 non-zero elements. There were S = 32
randomly distributed sampling points and SNR = 40 dB.
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