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ABSTRACT

Spherical microphone arrays have been studied for a wide range
of applications. In particular microphones arranged around an
open sphere are useful in scanning microphone arrays for sound
field analysis. However, open-sphere have been shown to have
poor robustness at frequencies related to the zeros of the spher-
ical Bessel functions. This paper presents a new dual ellipsoid
shape configuration, which achieves high robustness, with a rel-
atively small number of sampling points. The special geometry
of the ellipsoid surface is generated due to a mechanical off-
set, which allow a full measurement session with one continuous
motion of a single microphone.

1. INTRODUCTION

Spherical microphone arrays are widely studied and used for
sound field measurement and analysis. The spherical array con-
figuration has an advantage due to its symmetry, which simpli-
fies spatial sound field analysis in three dimensions, and allows
efficient spherical harmonics domain processing [1][2][3]. One
way to construct a spherical microphone array is to mount micro-
phones on the surface of a rigid sphere [1]. Rigid microphone ar-
rays are limited by size and number of microphones due to prac-
tical constraints such as cost, mobility, and the undesired scatter-
ing effect of the array on the sound field it measures. Limitations
on array size make this method less practical, particularly at low
frequencies where arrays of a large extent are required. Limit-
ing the number of microphones leads to limitations on the spatial
resolution achievable by processing data measured by the array
[3]. Another method to construct a spherical array is around an
open sphere. In this method microphones are typically placed
on the surface of a virtual sphere in a free field. One way to im-
plement open spherical arrays in applications that do not require
real-time or simultaneous recording by all microphones, is by
using a single or few microphones making measurement in se-
quence, in a configuration referred to as a scanning microphone
array configuration. Types of such configuration include the dual
open sphere array [4] and the shell array [5].
This paper starts with a short review of spherical microphone
array processing, and after presenting the advantages and short-
comings of single sphere, dual sphere and spherical shell array
configurations, the dual ellipsoid microphone array is presented.
This new method combines the advantages of the two previously
proposed methods. First, similar to the dual sphere configuration
[4], the implementation of the mechanical system based on a sin-
gle pressure scanning microphone attached to a rotating boom,
is relatively simple. Second, the samples in this configuration
cover a volume defined by the dual ellipsoid surface, similar

to the volume in the spherical shell configuration, so high ar-
ray robustness is achieved without increasing the number of mi-
crophones. Furthermore, due to the special mechanical offset,
no adjustment of boom length is required within a measurement
session, and the use of a single microphone is sufficient.

2. SPHERICAL MICROPHONE ARRAY PROCESSING

Consider a sound field with pressure denoted by p (k, r, θ, φ),
where k is the wave number, and (r, θ, φ) is the spatial location
in spherical coordinates [3].

Microphone array processing based on spherical harmonics
has been recently presented [1][6]. In this section we provide
a brief review of this theory, the goal here is finding the plane
waves composing the sound field, given the sound pressure mea-
sured on the spherical array. We start by describing the pressure
on a virtual open sphere. The pressure is due to a unit amplitude
incident plane wave, arriving from (θl, φl) and measured at po-
sition (r, θ, φ), with wave number k. Using spherical harmonics,
the pressure can be written as [7]

pl (k, r, θ, φ) =

∞∑
n=0

n∑
m=−n

bn (kr)Y m
∗

n (θl, φl)Y
m
n (θ, φ)

(1)
where bn (kr) is generalized for various array configurations [4]
and particularly for single open-sphere pressure microphone ar-
rays bn (kr) = 4πinjn (kr), where jn denotes the n− th order
spherical Bessel function. Y mn (θ, φ) represent the spherical har-
monics of order n and degree m. Taking the spherical Fourier
transform of pl (k, r, θ, φ), and using the orthogonality property
of spherical harmonics we get

plnm (kr) = bn (kr)Y m
∗

n (θl, φl) (2)

For the more general case, where the sound field is composed
of an infinite number of plane waves, having spatial amplitude
density a (k, θ, φ) , pnm can be written as [3]

pnm (k, r) = anm (k) bn (k, r) , (3)

where anm (k) is the spherical Fourier transform of a (k, θ, φ).
Plane wave decomposition can be now performed by dividing
the pressure spherical Fourier coefficients by bn. We wish to
avoid dividing by bn at low values of the spherical Bessel func-
tion. We therefore allow microphone positions not to be re-
stricted to a single sphere. This can be done by matrix formula-
tion of the problem. As shown by Rafaely [5], we can find the
spherical Fourier transform of the plane wave amplitude density
anm by
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anm = Cp (4)

where anm =
[
a00 (k) a1(−1) (k) · · · aNN (k)

]T
and p =

[
p (k, r1, θl, φl) · · · p (k, rM , θM , φM )

]T.

Matrix coefficients C can be calculated using matrix B de-
fined as:

B =



b0 (kr1)Y 0
0 (θ1, φ1) · · · b0 (krM )Y 0

0 (θM , φM )
b1 (kr1)Y −1

1 (θ1, φ1) · · · b1 (krM )Y −1
1 (θM , φM )

b1 (kr1)Y 0
1 (θ1, φ1) · · · b1 (krM )Y 0

1 (θM , φM )
b1 (kr1)Y 1

1 (θ1, φ1) · · · b1 (krM )Y 1
1 (θ1, φM )

...
. . .

...
bN (kr1)Y NN (θ1, φ1) · · · bN (krM )Y NN (θM , φM )



T

(5)
and the least squares solution for C is given by

C = B† (6)

where B† is the pseudo inverse, B† =
(
BHB

)−1
BH as-

suming M > (N + 1)2. Furthermore, an error in the solution
is multiplied by the condition number of matrix B . We there-
fore wish to design a microphone array with a minimal condition
number of matrix B, which refers to greater array robustness.

3. PREVIOUSLY INVESTIGATED CONFIGURATIONS

3.1. Scanning microphone array

In this method microphones are typically placed on the surface
of a virtual sphere in free field. One way to implement open
spherical arrays in applications that do not require real-time or
simultaneous recording of all microphones, is by using a single
or few microphones making measurement in sequence, in a con-
figuration referred to as a scanning microphone array configura-
tion. The measurements are typically taken by a microphone that
is mounted on a boom that is rotated in space using a mechani-
cal apparatus and a set of motors. Different positions of the mi-
crophone represent different ”microphones” of the microphone
array. Unlike the real-time array configuration, the number of
spatial samples in this case is not limited, and so a much greater
spatial resolution can be achieved compared to real-time array
systems, thereby enabling accurate capture of complex sound
fields. The length of the boom holding the scanning microphone
determines the radius of the open sphere and so analysis of lower
frequencies can be performed simply by extending the length of
the boom. Scanning microphone array systems are suitable for
offline processing applications, such as sound field analysis in
auditorium and room acoustics.

3.2. Single open-sphere

A single open-sphere can be very simply implemented as a scan-
ning microphone array configuration. This configuration suffers
from ill conditioning at frequencies related to the zeros of the
spherical Bessel function. The ill conditioning make this config-
uration less appropriate for the standard plane wave decomposi-
tion analysis.

(a) Mechanical system (b) Dual ellipsoid virtul surface

Figure 1: Scanning microphone mechanical system.

3.3. Dual open-sphere

A dual sphere configuration, obtaining high robustness by com-
bining data from measurements made over two radii is a practical
approach for a robust array configuration [4]. However, it comes
at the expense of using twice as many microphones (or spatial
sampling points) compared to the single sphere configuration.
The disadvantage is that the information from microphone sam-
ples from only one of the spheres is taken into the calculation for
each frequency. Another shortcoming of the dual-sphere config-
uration is that an adjustment of the second radius has to be made
within the measurement session, or two microphones rather than
one have to be employed. A method of finding the optimal ratio
of the two radii was also presented and will be used in this paper
[4].

3.4. Spherical shell

Spherical shell is another configuration where each microphone
is placed at a different radius and direction in the volume en-
closed by two spheres. The advantage of this method is that it
achieves high robustness without increasing the number of mi-
crophones, compared to the single-sphere configuration. In the
paper by Rafaely [5], the study of different array configurations
is realized by comparing the condition number related to each
configuration. Array configurations with lower condition num-
bers are considered more robust to noise and therefore preferable
in this respect. The shortcoming of the spherical shell configu-
ration is that the irregular positions in space of the microphones
make this configuration less suitable for a scanning microphone
array system.
In the next section we present the dual ellipsoid microphone ar-
ray, which combines the advantages of three previously investi-
gated configurations.

4. DUAL ELLIPSOID MICROPHONE ARRAY

This section presents a scanning microphone array mechanical
configuration, based on a single pressure microphone attached
to a boom that is mounted on a vertical rod using two circu-
lar motors. The mechanical configuration is similar to that of
a single sphere scanning microphone array, which is relatively
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simple to implement. However, in the proposed configuration, a
mechanical offset between the two motors generates an off-axis
system. This mechanical system allows a constrained motion of
the microphone inR3. By rotating the circular motors a dual el-
lipsoid virtual surface is generated by microphone positions. As
opposed to the dual sphere configuration, where an adjustment
of the second radius has to be made within the measurement ses-
sion, this special geometry allows a full measurement session
with one continuous motion of a single microphone. Further-
more, according to the spherical shell configuration, each micro-
phone is located at a different radius and so high robustness can
be achieved without increasing the number of microphones com-
pared to a single sphere configuration. A schematic illustration
of the mechanical system as well as the geometry of the dual
ellipsoid surface is presented in Fig. 1.

4.1. Dual ellipsoid surface geometry

In this section we will describe the geometry of the dual ellip-
soid surface with a linear transformation. To represent rotation
followed by translation with one linear transformation matrix,
we must use homogeneous coordinates [8]. Using homogeneous
transformation matrix, translation can be expressed with matrix
multiplication. This can be made by increasing the dimension of
the transformation matrix by one to absorb the translation part,
which is common in projective geometry.

To describe the proposed mechanical system we first define
the center of the volume enclosed by the dual ellipsoid surface
as the origin of the global coordinate system. Let d be the me-
chanical offset between the two circular motors, l the length of
the vertical rod, and ρ the length of the rotating boom attached
to the microphone as shown in Fig. 1 (a). The development
of the transformation matrix starts by setting the position of the
microphone to (0, 0, ρ, 1)T , where (0, 0, ρ)T is the position in
a local rotating cartesian coordinate system, and the fourth ele-
ment is the regular addition for homogeneous coordinates. Each
rotation of a circular motor followed by translation can be rep-
resented as an homogeneous transformation Ti, so the location
of the microphone with respect to the global coordinate system
can be determined by multiplying two transformation matrices
to obtain

 x
y
z
1

 = T2T1

 0
0
ρ
1

 (7)

The rotating boom is mounted on the first circular motor,
which performs a pitch by ξ (counterclockwise rotation of ξ
about the y−axis), followed by a translation along the x−axis.
This translation generates the off-axis system. Another transla-
tion is along the z − axis and the total translation is given by
(d, 0, l), together with the rotation we get transformation T1.
The second circular motor performs a yaw by ψ (counterclock-
wise rotation of ψ about the z − axis), followed by a second
translation along the z − axis given by (0, 0,−l) and together
with the rotation can be described by transformation T2.
The homogeneous transformation matrix that describes the ge-
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Figure 2: Optimal ratio of ellipsoids radii.

ometry of the ellipsoid surface is therefore given by T = T2T1

T =

 cosψ cos ξ − sinψ cosψ sin ξ d cosψ
sinψ cos ξ cosψ sinψ sin ξ d sinψ

0 0 cos ξ 0
0 0 0 1

 (8)

Note that the translations given by (0, 0,±l) were made only
due to practical reasons and was eventually canceled in the ho-
mogeneous transformation T. The position of the microphone is
completely determined once d, ρ, ψ, ξ are given. This implies
that the mechanically constrained dual ellipsoid has a total of
four degrees of freedom. Changing each parameter will change
the position of the microphone. ψ controls the azimuth and ξ
controls the elevation of the microphone. The angles ψ and ξ
act in the same way as φ and θ, respectively, in the standard
spherical coordinate system [9]. However, as opposed to the or-
dinary elevation angle θ ∈ (0, π), ξ is limited only in the range
ξ ∈ (0, 2π), which allows the generation of a dual ellipsoid sur-
face, rather than a single ellipsoid or sphere.

Given ψ ∈ (0, 2π) and ξ ∈ (0, 2π), dual ellipsoid surface
geometry is completely determined by the ratio of the two me-
chanical parameters d and ρ. For small d/ρ the two ellipsoids
merge and for d = 0 we get two centered spheres with equal
radii. When d/ρ is increasing from unity a donut shape rather
then dual ellipsoid is generated. For a constant ratio d/ρ, ex-
tending the length of the rotating boom ρ, will generate a larger
array, which will be more desirable for low frequencies.

4.2. Mechanical offset setting

Matrix B (5) is calculated for different values of k. The zeros
of the spherical Bessel function jn(kr) appear at different val-
ues of kr for different orders of n. We first consider a single
open sphere array, in which all microphones have equal radii.
If for a given k = k0, n = n0 we get jn0(k0r) = 0, then a
set of the appropriate rows of B(k0) will be zero and the low
rank of B will lead to ill conditioning of the array. The dual
ellipsoid spherical shell configuration is motivated by the work
of Balmges and Rafaely [4], in which a dual open-sphere con-
figuration was proposed to avoid zeros of jn(kr). The optimal
ratio of the two radii was derived, and so a zero of jn(kr) for
one radius means that the second radius with the same kr and
n will not be close to zero. In the dual ellipsoid configuration,
microphones are distributed over two virtual ellipsoid surfaces.
The distance from each microphone position to the origin refers
to the radius r. Microphone positions with different elevation
angles have different radii. Radii of sampling points over the
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Figure 3: Condition of matrix B, 6-th order array.

external ellipsoid are in the range
√
d2 + ρ2 ≤ rout ≤ d + ρ,

and the radii of sampling points over the internal ellipsoid are
in the range ρ − d ≤ rin ≤

√
d2 + ρ2. Let αell be the ra-

tio between the mean radius of external and internal ellipsoid
αell. = r̄out/r̄in, where r̄ is the mean value of ellipsoid ra-
dius. We wish to find the optimal ratio that will provide the
lowest condition number of matrix B and highest robustness of
the microphone array. Since a rigid sphere array configuration
does not suffer from ill conditioning, its condition number can
be considered as a lower bound for other open-sphere array con-
dition numbers. We define a criterion J(αell.) to examine value
of αell. for optimal robustness of the array configuration.

αopt = arg max
αell.

J(αell.) (9)

J(αell.) = min
k

{
cond (Brigid (k))

cond (Bell. (k))

}
(10)

This criterion is different from the criterion for optimal ratio
value found for the dual sphere [4]. Similar to the criterion pre-
sented in [4], a greater value of J(αell.) will refer to a better
array configuration. The magnitude of J(αell.) is computed nu-
merically for different radii ratios, and is presented in Fig. 2. It is
clear from the figure that even though the criteria were different,
the optimal value αopt is similar for both methods.

5. SPATIAL SAMPLING

In the previous section the geometry of the dual ellipsoid surface
was characterized. To design a microphone array configuration
with high robustness to noise, the sampling scheme has to be
defined. Several sampling schemes were previously presented
[6], that offer a tradeoff between the required number of micro-
phones for implementation on Nth order array, and the simplicity
of their arrangement.

5.1. Nearly uniform sampling

Uniform sampling is a scheme where neighboring microphones
are distributed at a constant distance called ’Platonic Solids’.
For a nearly uniform scheme the distance from neighbor micro-
phones is not constant, but the requirement for exact sampling
takes place with equal weights [6]. The advantage of this scheme
is the small number of sampling points. Around 1.5 (N + 1)2

microphones are required for an N ′th order array.

5.2. Gaussian sampling

The Gaussian sampling requires 2 (N + 1)2 microphones,
which is slightly higher than in a nearly uniform scheme, how-
ever, the arrangement of this scheme is much simpler. The az-
imuth φ is sampled within 2 (N + 1) equally spaced angles that
can be considered as stripes. The elevation angle θ requires only
(N + 1) nearly equally spaced angles. Larger spacing between
θ angles close to the sphere poles reduces sample density at the
poles.

5.3. Dual ellipsoid spatial sampling

The standard schemes refer to samples over a single sphere sur-
face, whereas here samples can be placed over a dual ellipsoid
surface. Therefore, only the directions of the microphones are
taken into account and not their radii. We need to determine
whether each microphone position is projected on the external
or internal ellipsoid surface. Since the implementation of a dual
ellipsoid array is based on a scanning microphone array, the
simplicity of the arrangement is not considered an advantage
for mechanical reasons but for the simplicity of defining the
projection rule.
The sampling scheme is important for array robustness. We
wish to utilize the volume enclosed by the ellipsoid surface and
so get maximal dispersion [8]. Maximal dispersion means we
leave minimal uncovered areas between neighboring micro-
phones ,which lead to a lower condition number of the matrix
B. The complexity of matrix B makes it very difficult to find an
analytical solution for distributing the microphones, therefore,
numerical solutions are proposed.

The first proposed scheme is based on standard Gaussian
sampling. Directions of microphone positions are determined by
the directions of the Gaussian sampling scheme. The simplicity
of the Gaussian scheme allows definition of a simple rule for de-
termining which microphone will be placed on which ellipsoid.
Microphones are alternately projected onto external and internal
ellipsoids, so the four closest neighbors of each microphone
have different projections from the centered microphone. This
rule leads to maximal dispersion and so to maximal robustness
compared with other array designs based on Gaussian sampling.
Fig. 3. represents the condition number of matrix B over the
range of kr, for different sampling schemes. The proposed
scheme overcomes the ill conditioning problem of the single
sphere. Furthermore this scheme achieves high robustness,
with condition number larger by less than 1dB relative to the
dual sphere array configuration, with smaller number of the
microphones required for the dual sphere configuration.

Better robustness with a reduced number of microphones
may be achieved by using global search methods such as Genetic
Algorithms (GA) based on nearly uniform design. Since com-
putation of large matrix condition numbers has to be calculated
for various frequencies for each iteration these numeric solutions
take a significant time to converge and are suitable only for a
specific array order. Furthermore preliminary study showed that
the improvement of the overall condition number is limited. It
is therefore most convenient to use the proposed Gaussian based
scheme, which achieves high robustness with a relatively small
number of microphones, and offers a very flexible and simple
way to implement scanning pressure microphone arrays.
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6. CONCLUSION

This paper presented a new spherical array configuration. This
configuration of dual ellipsoid shape achieves high array robust-
ness, with a relatively small number of sampling points. Meth-
ods for design and implementation of such an array for different
orders or size are given, making the array usable in practice for
various applications.
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